

NATIONAL INSTITUTES OF HEALTH Novel and Exceptional Technology and Research Advisory Committee (NExTRAC)

National Institutes of Health

Genome Editing

Matthew Porteus MD PhD Department of Pediatrics Divisions of Stem Cell Transplantation and Regenerative Medicine, Hematology/Oncology and Human Gene Therapy Institute of Stem Cell Biology and Regenerative Medicine Maternal Child Health Research Institute Stanford University <u>mporteus@stanford.edu</u> 5 December 2019

Potential Conflicts of Interest

CRISPR Therapeutics: Equity and SAB Allogene Therapeutics: Equity and SAB

Managed through Stanford in accordance with their conflict of interests policy.

Outline of Talk

- 1. What is genome genome editing?
- 2. How do you do genome editing?
- 3. Why are people excited about it?
- 4. What are some issues that we need to think about?

Genome Editing is changing the DNA sequence of a cell with up to single nucleotide precision

Nuclease Based Strategies are the Most Well-Developed Methods of Genome Editing

Method to Break Things

Method to Fix/Add Things

Multiple Uses of NHEJ Based Editing

Multiple Uses of Homologous Recombination Based Editing

A Variety of Engineered Nuclease Options

Porteus "A New Class of Medicines through DNA Editing" NEJM (2019)

Non-nuclease based genome editing strategies

(in different stages of development)

- AAV targeted integration without a break (Russell)
- Peptide Nucleic Acids (Glazer)
- Base Editing (Liu)
- Targeted Recombinases (Barbas, Gersbach)
- Targeted Transposases (Sternberg)
- Prime Editing (Liu)

Why is genome editing so exciting?

- Tremendously powerful and easy to use research tool
 - Knock-outs, knock-in, screens, lineage tracking...
 - With Cas9 based systems, works essentially in every biologic system
- Accelerate development of improved agricultural products
 - $\circ~$ Evaluated differently in the US and Europe as a GMO
- Could potentially improve the health of humans using precision genetic engineering

Monogenic Diseases Permeate Medicine (6,000-10,000 such diseases) (Patients: ~30 million in USA, ~350 million worldwide)

Hematology: Sickle Cell Disease/Thalassemia Hematology: Hemophilia **Pulmonary:** Cystic Fibrosis Immunology: Primary Immunodeficiencies (e.g. Severe Combined Immunodeficiency (SCID)), MSMD, IPEX Cardiology: Familial Hypercholesterolemia **Dermatology: Epidermolysis bullosa** Genetics: Muscular Dystrophy, MPS I, Gaucher Neurology: Huntington's Disease, Myotonic Dystrophy, NGLY1 deficiency Oncology: RUNX1-FPD, BRCA1, BRCA2, NF

> Each patient affects a larger community of people (echoes of the disease) + life years saved

Example 1: Ex Vivo Correction of a Disease Causing Variant (sickle cell disease)

Example 2: In Vivo Amelioration of Duchenne's Muscular Dystrophy

GENE EDITING

In vivo gene editing in dystrophic mouse muscle and muscle stem cells

Mohammadsharif Tabebordbar,^{1,2*} Kexian Zhu,^{1,3*} Jason K. W. Cheng,¹ Wei Leong Chew,^{2,4} Jeffrey J. Widrick,⁵ Winston X. Yan,^{6,7} Claire Maesner,¹ Elizabeth Y. Wu,¹† Ru Xiao,⁸ F. Ann Ran,^{6,7} Le Cong,^{6,7} Feng Zhang,^{6,7} Luk H. Vandenberghe,⁸ George M. Church,⁴ Amy J. Wagers¹‡ GENE EDITING

In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy

Christopher E. Nelson,^{1,2} Chady H. Hakim,³ David G. Ousterout,^{1,2} Pratiksha I. Thakore,^{1,2} Eirik A. Moreb,^{1,2} Ruth M. Castellanos Rivera,⁴ Sarina Madhavan,^{1,2} Xiufang Pan,³ F. Ann Ran,^{5,6} Winston X. Yan,^{5,7,8} Aravind Asokan,⁴ Feng Zhang,^{5,9,10,11} Dongsheng Duan,^{3,12} Charles A. Gersbach^{1,2,13*}

GENE EDITING

Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy

Chengzu Long,^{1,2,3}* Leonela Amoasii,^{1,2,3}* Alex A. Mireault,^{1,2,3} John R. McAnally,^{1,2,3} Hui Li,^{1,2,3} Efrain Sanchez-Ortiz,^{1,2,3} Samadrita Bhattacharyya,^{1,2,3} John M. Shelton,⁴ Rhonda Bassel-Duby,^{1,2,3} Eric N. Olson^{1,2,3}†

Example 3: Potentially improving anti-cancer based cell therapies (combining genome editing with synthetic biology)

Targeting a CAR to the *TRAC* locus with CRISPR/Cas9 enhances tumour rejection

Justin Eyquem¹*, Jorge Mansilla–Soto¹*, Theodoros Giavridis¹, Sjoukje J. C. van der Stegen¹, Mohamad Hamieh¹, Kristen M. Cunanan², Ashlesha Odak¹, Mithat Gönen² & Michel Sadelain¹

Genome Editing Moving Forward

- 1. Technical issues of specificity (how to measure, how to evaluate, how to minimize) are being solved by the healthy mechanisms of biomedical research.
- 2. In human genome editing, what applications should and should not be developed?
- 3. Equity and Justice: How to assure that all people who might benefit from these innovative therapies will have access to them?
 - How to assure that we do not start thinking of human beings as objects to be engineered/manipulated?

The Bioethical 2x2 Matrix

Somatic Cell Editing for Disease/Prevention of Disease	Germline/Heritable Editing For Disease/Prevention of Disease
Somatic Cell Editing for Enhancement	Germline/Heritable Editing for Enhancement

Challenge of Getting High Tech Therapies to All Patients in the World Hematopoietic Stem Cells Editing: Harvested from Patient x 10⁶ CD34/kg 10⁶ CD34/kg Autologo to Patient 8-10 mg/kg) Ideal: >5 x 10⁶ CD34/kg (ermo) At A (Agilent) Minimum: 5% Gene Correction GMP Grade AAV6 (LCGM) Ideal: >10% Gene Correction GMP Grade Electroporation (Lonza) with No off-target mutations/rearrangements above background and no signs of functional toxicity

History of Medicine: Innovative Medicines Result in New Cures

Sanitation/Clean Water

Antisepsis/Anesthesia

Vaccines

Small Molecules

Biologics (Enzymes and Antibodies)

Cell and Gene Medicines

Microbiome Manipulation

These modalities remain foundational in medicine. In fact, we still need to figure out how to distribute to more people in the world (equity and justice)

"Living Drugs" Different PK/PD Migrate, Divide, Respond...