Commercial Gene Synthesis

John Mulligan

BIOTECHNOLOGY

NSABB, July 13, 2006

- Commercial gene synthesis today
- Issues and technology for the future
- Current screening practices

Access to DNA is Central to Modern Biology

- > Biomedical Research
- Biology
- > Agriculture
- > New areas such as Synthetic Biology

Acquiring and Modifying DNA is Costly

- Researchers spend \$300 to \$500 million a year on reagents to clone and modify genes
- Every \$1 spent on reagents represents an additional \$3 to \$5 of fully loaded costs
 - Labor, overhead, facilities, etc.
- Fully-loaded costs of \$1 billion or more annually

Commercial Gene Synthesis

> A potential substitute for \$1 billion in costs

> The current market is \$20 to \$30 million a year

- Revenues rowing at 30% to 50% a year
 - Volume growth much higher
- Highly fragmented: 50 or more companies in this area world wide
- Still a tiny fraction of the overall molecular biology market
 - We expect it to grow rapidly but to take 5-10 years to reach a significant fraction of the molecular biology market
 - Demand will drive rapid improvement of the technology

Gene Synthesis Technology

In use since the late '70's but only beginning to be widely used

> Challenges

- Error rate: ~1/300
- Mismatched hybridization can lead to scrambled order
- Reliability impacts speed and cost

> Three general approaches

- Standard PCR synthesis
- Array-based PCR synthesis
- Solid phase assembly

PCR-based Gene Synthesis

Synthesize an overlapping set of oligonucleotides that cover the desired sequence

• Full coverage of both strands or partial

Pool the oligos and PCR amplify

- Some protocols start with a ligation step
- Most use a secondary amplification with outside primers
- Clone into a plasmid vector
- Sequence and choose a correct clone
- Assemble larger fragments by fusion PCR

PCR-based Gene Synthesis

- Most commercial synthesis and essentially all synthesis in individual labs is based on PCR
- Many published protocols
 - Most work on a subset of genes
- A substantial fraction of natural sequences require or benefit from other approaches
 - Not "PCR-able"
 - High GC, repetitive, very long, etc.

Array-Based PCR Synthesis

Start with a pool of oligonucleotides synthesized on an array

- Church, Gao, et al. (2004)
- Could be a very cheap source of oligos: 4,000 to 800,000 oligos for \$500 to \$1,000
- Currently limited by the quality of array-based oligo synthesis
- Codon Devices is commercializing this technology

Solid-Phase Gene Synthesis

Conceptually similar to oligonucleotide synthesis

- Monomers = duplex DNA fragments
- Add molar excess to drive the reaction
- Wash away failures and side reactions at each step
- > Works on almost any sequence
- Method used at Blue Heron
 - Developed under an NIGMS-funded SBIR grant
 - ~5 megabases synthesized

Error Removal

- Raw oligonucleotides have an error rate after cloning of 1/20 to 1/500 base pairs, depending on the source
- Economical synthesis depends on reduction in error rates
- Most commercial groups use a proprietary error removal technology to improve reliability and reduce costs

Complex Manufacturing Process

Every order is different

- Every gene is made from a dozen to several thousand parts
- Every part is new and used for only one order
- > The smallest parts are chemicals
 - Mixed populations of good and bad parts
 - Error rate of on in a few hundred
- Larger parts are biological
 - Unpredictable behavior
- > The final product must be perfect

Existing Manufacturing Tools are Inadequate

Commodity market

- Prices drop 30% to 50% / year
- Must drop production costs at least this fast
- Mass customization used in some industries
 - Have not found one where every part is new
- Handling high failure rates is critical to controlling manufacturing costs
- Existing tools focused on assembly-line production, "job shops", custom engineering
 - None can address this process fully

Automated Laboratory vs. Manufacturing

Most or all gene synthesis today is carried out in sophisticated laboratories with some automation

- PhDs involved
- Difficult to scale rapidly

Within a few years, nearly all commercial gene synthesis will be carried out in manufacturing facilities

- Largely automated
- Robots for production
- People for process development
- Highly sophisticated process control and scheduling

Interesting, meaty problems for operations research...

The Future: Centralized Commercial Synthesis

- Industrialization and ability to scale the critical competitive arena for commercial providers
- New technologies
 - Array-based synthesis
 - New oligonucleotide synthesis technology
 - New assembly technology for large fragments

Centralization of commercial synthesis

- Two to four companies, each with a capacity to produce 20 to 50 megabases a year
- A small number of specialized "boutique" operations
- Most using a mix of technologies

The Future: A Dispersed Technology

> Technology access is easy

- Robust, world-wide market for used equipment
- Simple hardware for all aspects of the technology- could be built from scratch by a few engineers
- Oligonucleotide chemistry is feasible for companies or laboratories in many (nearly all?) countries
- Molecular biology and bacteriology kits available from many different companies in many countries
- Protocols on the internet

Governments or NGOs

 Any country or moderately well-funded group could put together synthesis capacity FROM SCRATCH with a moderate investment (\$1 million and 3-6 PhDs)

Gene Synthesis Technology is Widespread

Bioneer Corporation

49-3, Munpyeong-dong, Daedeok-gu, Daejeon 306-220, Korea

"The capacity of this facility is to produce 7.2 tons of phosphoramidite per year...

Currently we have (the) capacity of producing 20,000 oligos per day...

Bioneer offers a special gene synthesis service."

Controlling Synthesis Technology is Difficult

> Synthesis materials are easy to acquire

- Any sophisticated chemistry group could build oligonucleotide synthesis capacity from scratch
- For large-scale synthesis groups the "drop at the bottom of a reagent bottle" can add up to kilograms of phosphoramidite per year- tracking the materials is not feasible
- PCR-based synthesis works on many sequences
 Transforming and growing bacteria is low-tech

New Methods Extend Synthesis Capabilities

Assembly manual for the POSaM:

THE ISB Piezoelelctric Oligonucleotide Synthesizer and Microarrayer

Accurate multiplex gene synthesis from programmable DNA microchips

Jingdong Tian¹, Hui Gong¹, Nijing Sheng², Xiaochuan Zhou³, Erdogan Gulari⁴, Xiaolian Gao² & George Church¹

Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences

Xiaochuan Zhou^{3,4}, Shiying Cai³, Ailing Hong^{3,4}, Qimin You³, Peilin Yu¹, Nijing Sheng¹, Onnop Srivannavit², Seema Muranjan³, Jean Marie Rouillard², Yongmei Xia², Xiaolin Zhang^{3,4}, Qin Xiang³, Renuka Ganesh^{1,4}, Qi Zhu¹, Anna Matejko¹, Erdogan Gulari² and Xiaolian Gao^{1,*}

Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis

Kathryn E. Richmond¹, Mo-Huang Li¹, Matthew J. Rodesch², Madhusudan Patel^{1,3}, Aaron M. Lowe⁴, Changhan Kim⁵, Larry L. Chu¹, Narasimhar Venkataramaian⁵, Shane F. Flickinger³, James Kaysen¹, Peter J. Belshaw^{3,6}, Michael R. Sussman^{2,6} and Franco Cerrina^{1,5,*}

Build genes with a modified ink-jet printer?

Reducing the Potential for Nefarious Uses

- Centralization will simplify monitoring and regulation of gene synthesis
- Dispersion of the technology makes complete control implausible
- Screening orders will be increasingly important

Gene Synthesis Screening

Some companies screen orders

- Different software
- Different databases
- Different criteria

Some companies do not screen

- Cost
- Liability
- Effort

Order Screening at Blue Heron

Screen all orders against a database of select agent genes

Black Watch, Craic Computing

Review orders that resemble select agent genes

- A Ph.D. reviews several positive hits per day
- Most hits are not select agent genes
- Detailed analysis of select agent genes
 - Most select agent genes are OK to provide
 - Some require significant review
 - Check the literature
 - Discuss with customer

Decide if we will build the sequence

Screening Tools

Current tools very simple

- Homology search (Blast)
- High false positive
- Low or zero false negative
- No database of "Select Sequences"
- Rules require interpretation
- > Therefore, screening is expensive

Industry Consortium

International Consortium for Polynucleotide Synthesis (ICPS)

- Goals
 - Develop improved screening software and other tools to simplify and improve screening
 - Encourage the widespread use of these tools
 - Provide an industry point of contact with government

Status

- Established in June
- Founding members recruiting other companies
- Establishing operational group