State of the art strategies for gene drive and biological risk mitigation

UC San Diego

Talk Overview

- current "state of the art" gene drive approaches
 - Linked-Homing Drive
 - Split-Homing Drive
- Population modification vs population suppression
- Current "state of the art" strategies for biological risk mitigation

CRISPR-CAS9: GENE DRIVE

a Malaria Malaria

Current "state of the art" Gene-Drive strategies

Approach	Examples	Temporal Dynamics	Geographic Reach
Gene Drives	Linked-homing#, Medea, CleaveR, TARE/TADE#	Self-propagating (low threshold)	Non-localized
	Translocations, Underdominance#, UD ^{MEL*,#}	Majority wins* (high threshold)	Localized
	Daisy# <mark>split- homing#</mark> killer rescue	Self-limiting (temporally limited)	
Non-Drives	SIT#, RIDL#, fsRIDL#, pgSIT#		

- Non-localized Drive systems
 - Low Threshold Self propagating Non-localized predicted to spread beyond release site.
- Localized Drive Systems
 - **High Threshold** only spread if above a threshold not predicted to spread beyond release site. Inherently confineable.
 - **Self-limiting** temporally limited do not persist indefinitely not predicted to spread beyond release site.
- Non-Drives will not spread or persist.

Talk will focus on: Linked-homing and Split-homing

Linked-Homing - Population Modification Gene Drives

Threshold independent Population Modification Gene Drives

In principal a <u>single organism</u> release into a wild population <u>could</u> spread that trait throughout the wild population

- Driving an engineered anti-pathogen gene into a neutral site to convert the entire population into a disease resistant population.
- Ecologically For population modification the engineered population would persist in the environment but they would no longer be able to transmit pathogens.

Linked-Homing - Population Suppression Gene Drives

Threshold independent Suppression Gene Drives

In principal a <u>single organism</u> release into a wild population could spread that trait throughout the wild population

Population Suppression - Drive a population to extinction

- e.g. Drive into a recessive gene required for female fertility/viability
- Ecologically For population suppression the engineered population would persist in the environment until fixation then the entire population would crash and be eradicated.

Categories of Gene Drives

Categories of Gene Drive

Safeguarding CRISPR-Cas9 gene drives in yeast

James E DiCarlo^{1-3,7}, Alejandro Chavez^{1,2,4,5,7}, Sven L Dietz^{1,2,4,6}, Kevin M Esvelt^{2,4} & George M Church^{1,2,4}

nature biotechnology

Assessment of a Split Homing Based Gene Drive for **Efficient Knockout of Multiple Genes** G3 🔛 Nikolay P. Kandul,* Junru Liu,* Anna Buchman,* Valentino M. Gantz,* Ethan Bier,*,* and Omar S. Akbari*,^{†,1} *Section of Cell and Developmental Biologyand [†]Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093 ORCID ID: 0000-0002-6853-9884 (O.S.A.) A transcomplementing gene drive provides a A home and rescue gene drive efficiently spreads and persists in flexible platform for laboratory investigation and populations 💬 🚊 bio Ryiv potential field deployment nature communications Nikolay P. Kandul, Junru Liu, Jared B. Bennett, John M. Marshall, Omar S. Akbari doi: https://doi.org/10.1101/2020.08.21.261610 Víctor López Del Amo, Alena L. Bishop, Héctor M. Sánchez C., Jared B. Bennett, Xuechun Feng, John M. Marshall, Ethan Bier & Valentino M. Gantz 🖂 Report Small-Molecule Control of Super-Mendelian Inherently confinable split-drive systems in Drosophila Inheritance in Gene Drives **Cell Reports** bioRγiv Víctor López Del Amo¹, Brittany S. Leger^{2, 8}, Kurt J. Cox^{3, 4, 5, 8}, Shubhroz Gill³, Alena L. Bishop¹, Garrett D. Gerard Terradas^{1,2}, Anna B. Buchman¹, Jared B. Bennett³, Isaiah Shriner¹, John M. Scanlon², James A. Walker^{2, 6, 7} 은 쯔, Valentino M. Gantz¹ 은 쯔, Amit Choudhary^{3, 4, 5, 9} 은 쯔 Marshall^{4,5}, Omar S. Akbari¹, and Ethan Bier^{1,2*} A CRISPR homing gene drive targeting a Molecular safeguarding of CRISPR gene drive haplolethal gene removes resistance alleles experiments and successfully spreads through a cage population Jackson Champer ¹², Joan Chung ¹², Yoo Lim Lee ¹², Chen Liu ¹², Emily Yang ¹², Zhaoxin Jackson Champer, Emily Yang, Esther Lee, 💿 Jingxian Liu, 💿 Andrew G. Clark, and Wen¹, Andrew G Clark¹, Philipp W Messer¹ Philipp W. Messer

Letter | Published: 23 January 2019

Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline

Hannah A. Grunwald, Valentino M. Gantz, Gunnar Poplawski, Xiang-Ru S. Xu, Ethan Bier & Kimberly L. Cooper ⊡

nature

Development of a confinable gene drive system in the human disease vector Aedes aegypti

Ming Li¹, Ting Yang¹, Nikolay P Kandul¹, Michelle Bui¹, Stephanie Gamez¹, Robyn Raban¹, Jared Bennett², Héctor M Sánchez C³, Gregory C Lanzaro⁴, Hanno Schmidt⁴, Yoosook Lee⁴, John M Marshall^{3,5}, Omar S Akbari^{1,6}*

Aedes aegypti Split-Homing drive is self-limiting and is confineable.

Stochastic simulations 10 releases of homozygous males at 1:1 total population

Summary

- Multiple Kinds of Gene Drives Exist and their development has been accelerated by CRISPR
- Linked-Homing Drives Can be used for either population suppression / modification.
 - "State of the Art" Risk Mitigation Strategies
 - Drive Countermeasures
 - (e.g. Reversal Drives / ERACR's / eCHACR's)
 - Attempt to Localize the Drive
 - Design to target a Private allele.
 - Release on limited access ecologically isolated island.
 - Split-Homing Drives Can also be used for either population suppression / modification.
 - Engineered and proven effective in many species
 - Inherently confinable,
 - Safe
 - effective.
 - <u>Inherently Self-limiting</u>: No need for the release of a second-generation countermeasures.

Are Confinable Split-Homing Drives the optimal choice for the first field trials of Gene Drives?

DARPA

Re ector

Thank You!!

TATA INSTITUTE FOR GENETICS AND SOCIETY

Diego www.Akbarilab.com